Chapter 2 – Factors: How Time and Interest Affect Money

Standard Factor Notation

- General Form: \((X/Y, i, n) \) or \((X/Y) \)
 - “X given Y – factor”, tabulated for different \(i, n \)
 - \(X = \text{variable to be calculated} \)
 - \(Y = \text{known variable} \)
 - \(i = \text{interest rate per period} \)
 - \(n = \text{number of interest periods} \)

Single-Payment Factors (F/P and P/F)

Recall that \(F = P(1 + i)^n \)

Given \(P \), to find \(F \), \((1+i)^n \) is the F/P conversion factor

\[
F = P \left(1 + \frac{i}{100}\right)^n
\]

\((F/P, i, n) \) is tabulated for different \(i \) and \(n \)

FV(I%,n,P) in Excel

Example C1:
If $1,000 were deposited in a bank savings account, how much would be in the account in two years if the bank paid 4% interest compounded annually?

Solution: \(P = $1,000, n = 2, i = 4\% \), \(F = ? \)

\[
F = P(1+i)^n = $1,000 \left(1 + \frac{0.04}{100}\right)^2 = $1,081.60, \text{ or}
\]

The table factor \((F/P, 4\%, 2) \) is 1.0816 (p. 710), therefore

\[
F = P \left(1 + \frac{0.04}{100}\right)^2 = $1,000 \times 1.0816 = $1,081.60
\]
Single-Payment Factors (F/P and P/F)

(P/F): Single Payment Present Worth Factor

Find \(P \) (\(i \) and \(n \) are also given)

\[F \text{ given} \]

Single-Payment Factors (F/P and P/F)

Since \(F = P(1 + i)^n \)

\[P = F / (1 + i)^n \]

\[1/(1+i)^n \text{ is the P/F conversion factor} \]

\[P = F (P/F) \]

(P/F, i, n) is tabulated for different \(i \) and \(n \)

\[PV(i\%, n, F) \text{ in Excel} \]

Example C2:
If you wished to have $1,082 in a savings account at the end of two years and 4% interest was paid annually, how much should you put into the savings account now?

Solution: \(P = ?, \ n = 2, \ i = 4\%, \ F = $1,082 \)

\[P = F / (1+i)^n = $1,082 / (1 + 0.04)^2 = $1,000.37, \text{ or} \]

\[P = F (P/F, 4\%, 2) = $1,000.37 \]

F/P and P/F Factors

- Simplest factors
- Similar ideas are used in developing more factors for more complex cash flow types

Uniform-Series Factors

Uniform Series Present Worth Factor \((P/A)\)

\[P = \] \[\begin{array}{cccc}
0 & 1 & \ldots & n-1 & n \\
A & A & \ldots & A & A \\
\end{array} \]

- Objective: Find \(P \), given \(A \)

Uniform-Series Factors

- Uniform-Series Present Worth Factor \((P/A)\)
- Using tables: \(P = A (P/A, i, n) \)
- Using Excel: \(P = PV(i\%, n, A) \)

\[P = \frac{A(1+i)^n-1}{(1+i)^n i} \]
Uniform-Series Factors

Capital Recovery Factor (A/P)

- Objective: Find A, given P.

\[
P = A \left(\frac{1}{(1+i)^n} \right)
\]

Using tables: \(A = P \left(\frac{A}{P}, i, n \right) \)
Using Excel: \(A = PMT(i\%, n, P) \)

Uniform-Series Factors

Uniform-Series Compound Amount Factor (F/A)

- Objective: Find F, given A

\[
F = \frac{A}{1+i} \left(\frac{1}{1+i} \right)^{n-1}
\]

Using tables: \(F = P \left(F/A, i, n \right) \)
Using Excel: \(F = FV(i\%, n, A) \)

Uniform-Series Factors

Sinking Fund Factor (A/F)

- Objective: Find A, given F.

\[
A = F \left(\frac{1}{(1+i)^n} \right)
\]

Using tables: \(A = F \left(A/F, i, n \right) \)
Using tables: \(A = PMT(i\%, n, F) \)
Standard Factor Notation

<table>
<thead>
<tr>
<th>To Find</th>
<th>Given</th>
<th>Factor</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>F</td>
<td>(P/F, i, n)</td>
<td>P = F*(P/F, i, n)</td>
</tr>
<tr>
<td>F</td>
<td>P</td>
<td>(F/P, i, n)</td>
<td>F = P*(F/P, i, n)</td>
</tr>
<tr>
<td>P</td>
<td>A</td>
<td>(P/A, i, n)</td>
<td>P = A*(P/A, i, n)</td>
</tr>
<tr>
<td>A</td>
<td>P</td>
<td>(A/P, i, n)</td>
<td>A = P*(A/P, i, n)</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>(A/F, i, n)</td>
<td>A = F*(A/F, i, n)</td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>(F/A, i, n)</td>
<td>F = A*(F/A, i, n)</td>
</tr>
</tbody>
</table>

Practice deriving factor formulas using geometric sum identity

Example C3:

Tom deposits $500 in his saving account at the end of each year for 24 years and the bank pays 6% interest per year, compounded yearly. What are the present worth and future worth of this yearly investment.

Solution:

\[P = \frac{500[(1+0.06)^24-1]}{(1+0.06)^24(0.06)} = \$ 6275.18 \] (or use P/A factor from the table = 500 * 12.5504 = $6275.20)

F = ?

Solution (cont.):

\[F = \frac{500[(1+0.06)^24-1]}{0.06} = \$ 25,407.79 \]

Example C4:

A proximity sensor attached to the tip of an endoscope could reduce risks during eye surgery by alerting surgeons to the location of critical retinal tissue. If a certain eye surgeon expects that by using this technology, he will avoid lawsuits of $0.5 and $1.25 million 2 and 5 years from now, respectively, how much could he afford to spend now if his out-of-pocket costs for the lawsuits would be only 10% of the total amount of each suit? Use an interest rate of 8% per year.

Solution:

\[P = 50,000 (P/F,8\%,2) + 125,000 (P/F,8\%,5) = \$ 127,940 \]
Example C5:
A company which uses austenitic nickel-chromium alloys to manufacture resistance heating wire is considering a new annealing-drawing process to reduce costs. If the new process will cost $1.75 million dollars now, how much must be saved each year to recover the investment in 10 years at an interest rate of 12% per year?

Solution
\[A = 1.75 \text{ million} \times (A/P, 12\%, 10) = 309,715 \]

Uniform-Series Factors

Example C6:
What initial investment is needed in order that an income of $400 per year can be made for 5 years?

Assume an annual interest rate of 15%.

Solution:
\[A = 400, \quad i = 15\%, \quad n = 5, \quad P = ? \]
\[P = 400 \times (1 + 0.15)^5 - 1 / (1 + 0.15)^5(0.15) = 1,341 \]

What is the corresponding value of F?

Compound Interest Factor Tables

Factor values are listed in tables 1-29 at the end of the text (pgs. 702 – 730)

- i: 0.25% - 50%
- n: 1 - 480

Example C7: Billy wishes to save enough money to buy a new car. He will place a sum in a savings account today and again in three years in anticipation of spending $15,000 in five years. What should the amount be? Take i = 12%.

Solution:
\[15,000 = S(1+i)^5 + S(1+i)^3 = S(1.12)^5 + S(1.12)^3 \]
\[= S(3.016742) \]
\[S = 15,000 / 3.016742 = 4,972 \]

Alternatively,
\[[S(1+i)^5 + S(1+i)^3] = 15,000 \]
\[S(1+i)^5 + S(1+i)^3 = 15,000 \]
\[S = 4,972 \]
Alternatively

Using Tables

\[15,000 = S(P|F, 12\%, 5) + S(P|F, 12\%, 2) \]
\[= S(1.7623) + S(1.2544) \]
\[= S(3.0167) \]
\[S = \frac{15,000}{3.0167} = 4,972 \]

Example C8:

Bill wants to make deposits each year for five years to buy the $15,000 car. His first payment will be one year from today. How big must the deposits be if interest is 12% per year?

Solution:

a) Using Tables

\[$15,000 = A(F|A, 12\%, 5) = A(6.3528) \]
\[A = \frac{15,000}{6.3528} = 2,361 \]

Compound Interest Factor Tables

b) Solution: Using Formula

\[A = \frac{\frac{15,000 \times 0.12}{(1+0.12)^5 - 1}}{1+0.12} \]
\[= \frac{15,000 \times 0.12}{(1.12)^5 - 1} = 2,361 \]

c) Using Spreadsheet PMT function

\[A = \text{PMT}(12\%, 5, 0, 15000) = 2,361.15 \]

Interpolation in Interest Tables

- Read Section 2.4

Arithmetic Gradient Factors

- An arithmetic gradient is a cash flow series that either increases or decreases by a constant amount each period.
- The base amount \(A_1 \) \((A)\) is the uniform-series amount that begins in period 1 and extends through period \(n \).
- Starting with the second period, each payment is greater (or smaller) than the previous one by a constant amount referred to as the arithmetic gradient \(G \).
- \(G \) can be positive or negative.
Arithmetic Gradient Factors

Base Amount

\[A_1, A_2, A_3, \ldots, A_n \]

Gradient (the base is ignored)

\[G, (n-1)G, (n-2)G, \ldots, 2G, 3G, \ldots, (n-1)G, A_1 \]

Chapter 2 Factors: How Time and Interest Affect Money

Case 1: Find \(P \) given \(G \)

The total present worth \(P \) can be found as the sum of the present values of the series of base payments \(P_A \) and the present worth of the series of gradient payments \(P_G \):

\[P = P_A + P_G \]

Arithmetic Gradient Factors

We will study the following three cases:

- **Case 1**: Find \(P \) given \(G \)
- **Case 2**: Find \(F \) given \(G \)
- **Case 3**: Find \(A \) given \(G \)

Case 2: Find \(F \) given \(G \)

Case 3: Find \(A \) given \(G \)

The present worth of the base payment \(A \) for each period 1 through \(n \) is:

\[P_A = A_1 \left(\frac{P}{A_i}, i, n \right) \]

The present worth of the gradient payments \(G \) for each period 2 through \(n \) is:

\[P_G = \frac{G}{i(1+i)^n} \left[\frac{(1+i)^n - 1}{i} - n \right] = G \left(\frac{P}{G}, i, n \right) \]
Chapter 2 Factors: How Time and Interest Affect Money 43

Arithmetic Gradient Factors

Case 2: Find F given G and A_1

Similarly, $F = F_A + F_G$

Since

$$P_G = \frac{G}{i(1+i)^n} \left[\frac{(1+i)^n-1}{i}\right] - n$$

and $F = P(1+i)^n$

$$F_G = \frac{G}{i} \left[\frac{(1+i)^n-1}{i}\right] - n$$

Also,

$$F_A = A\left[\frac{(1+i)^n-1}{i}\right] = A_1 \left(F/A, i, n\right)$$

Chapter 2 Factors: How Time and Interest Affect Money 44

Arithmetic Gradient Factors

Case 3: Find A given G and A_1

$$A_T = A_1 + AG$$

Since and

$$F = G \left(A/G, i, n\right)$$

$$A_g = \frac{G}{i} \left[\frac{(1+i)^n-1}{i}\right] - n\left[\frac{i}{(1+i)^n-1}\right] = G\left[1 - n\frac{i}{(1+i)^n-1}\right]$$

$$= G \left(A/G, i, n\right)$$

Chapter 2 Factors: How Time and Interest Affect Money 45

Arithmetic Gradient Factors

Example C9:

100 is deposited in a saving account one year from today, 200 two years from now, 300 three years from now, ..., 1000 ten years from now. What is the value of the account in ten years if interest is 7%.

Solution:

Example 2.8 Cash Flow Diagram

(*1,200)

(*1,000)

(*800)

(*600)

(*400)

(*200)

0

0123456789 1 0

Period

Cash Flow

Example 2.8: Cash Flow Diagram

Uniform Gradient

($200)$

($400)$

($600)$

($800)$

($1,000)$

($1,2000)$

0123456789 1 0

Period

Cash Flow

Solution:

$$A_1 = -100, G = -100, n = 10$$

$$F_T = F_A + F_G$$

$$= -100 \left(F|A, 7\%, 10\right) +$$

$$+ \left(-100 \left(P|G, 7\%, 10\right) \left(F|P, 7\%, 10\right)\right)$$

$$= -100 \left(13.8164 + (27.7156)(1.9672)\right)$$

$$= -6833.85$$

What are the values for P_T and A_T?
Arithmetic Gradient Factors
Solution:

\[P_T = F_T \left(\frac{P}{F}, 7\%, 10 \right) = -3473.64 \]
\[A_T = F_T \left(\frac{A}{F}, 7\%, 10 \right) = -494.63 \]

Geometric Gradient Series Factors
- A cash flow series that either increases or decreases from period to period by a constant percentage.
- \(g \): constant rate of change, in decimal form, by which amounts increase or decrease from one period to the next (it's the geometric gradient).
- Initial amount \(A_1 \) in year 1, year 2 cash flow is \(A_1(1+g), \ldots, \) year \(n \) cash flow is \(A_1(1+g)^{n-1} \)

\[P_g \] is the total present worth for the entire cash flow series

a) \(g \neq i, \quad P_g = A_1 \left[1 - \left(\frac{1 + g}{1 + i} \right)^n \right] \]

b) \(g = i, \quad P_g = nA_1/(1+i) \)

Geometric Gradient Series Factors

Example C10:
A pick-up big wheel modification costs $8000 and is expected to last 6 years with a $1300 salvage value. The maintenance cost is expected to be $1700 for the first year, increasing 11% per year thereafter. Determine the total equivalent present worth of modification if the interest rate is 8% per year.

Solution: \(A_1 = 1700, \quad g = 0.11, \quad i = 0.08, \quad n = 6 \)

Initial cost of $8,000 and annual maintenance costs are negative cash flows; salvage value of $1,300 is a positive cash flow (revenue).

\[P_T = -8,000 - P_g + 1,300\left(\frac{P}{F}, 8\%, 6 \right) \]

\[= -8,000 -1,700[1-(1.11/1.08)^6]/(-0.03) + 1,300(0.6302) \]

\[= -8,000 -1,700(5.9559) + 819.26 \]

\[= -$17,305.85 \]