ISEN 601
Location Logistics
Dr. Gary M. Gaukler
Fall 2011

Transportation

• Trends
Transportation

• Some terms

 • **FTL:** full truck-load → charged per unit distance
 • **LTL:** less-than-truckload → charged per unit

 \[\Rightarrow \text{cost} \propto \text{distance} \]

 \[\Rightarrow \text{cost} \propto \text{amount} \propto \text{distance} \]

Transportation

• Transportation by type

 Cost / ton-mile

 • **Air:** \$0 /ton-mile
 • **FTL:** \$1 /ton-mile
 • **LTL:** \$5 /ton-mile

 \(\text{(or} \ 2000) \)
Types of Transportation Paths

- **Direct Shipment:**

 \[\text{Capacity (c_i)} \rightarrow \text{Retailers (R_j)} \rightarrow \text{Demand (d_i)} \]

 \[c \rightarrow \text{Retailers (R)} \rightarrow d \]

 \[a_i j \text{ (cost per unit per unit distance) x} \]

 \[n \text{ retailers} - j \]

 \[m \text{ suppliers} - i \]

 \[x_{ij} = \text{amount of product supplied from } i \text{ to } j \]

Direct Shipment

- **Math formulation:**

 \[\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \]

 \[s.t. \text{ "capacity" } \sum_{j=1}^{n} x_{ij} \leq c_i, \forall i \]

 \[\text{ "demand" } \sum_{i=1}^{m} x_{ij} \geq d_j, \forall j \]

 \[x_{ij} \geq 0, \forall i, \forall j \]
Direct Shipment

- When to use?

Improvements to Direct Shipment

- Option 1: Crossdocking

how to merge multi products

keeps FTLs
Improvements to Direct Shipment

- Option 2: DC
 - Custom packaging (Dell)
 - Customization
 - Transportation
 - Logic doesn't change

Improvements to Direct Shipment

- Option 3: Delivery rounds / TSP
 - Travelling salesman problem
 - Set of n locations \(\{1, 2, \ldots, n\} \)
 - Travel costs \(c_{ij} \)
 - Decision variables:
 - \(y_{ij} = 1 \) if we go \(i \to j \)
 - \(y_{ij} = 0 \) otherwise
 - Visit all locations
 - Return to starting point
Traveling Salesman Problem

- Problem statement:
\[
\min \ \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}
\]

s.t. \(x_{ij} \in \{0, 1\} \)
leave location \(i \) exactly once \(\sum_{j \neq i} x_{ij} = 1 \) for \(i \in N \)
enter location \(j \) exactly once \(\sum_{i \neq j} x_{ij} = 1 \) for \(j \in N \)

Traveling Salesman Problem

- BIP formulation:
Traveling Salesman Problem

- Subtours:

\[\text{How can we eliminate} \]

\% don't want this!!

Warehouse Location Problem

- Mixed-integer programming formulation:

\[\cup_{S \neq \emptyset} \text{SCN, } S \neq \emptyset \]

\[\sum_{i=1}^{S} x_{ij} \geq 1 \quad \forall \text{SCN, } S \neq \emptyset \]

*Pick a subset \(S \) to take nodes not in subset \(\emptyset \), check that I leave subset-to-nodes at least once.
Dynamic Warehouse Location

- Idea: demands and costs change over time
- Divide up time into discrete periods, 1..T
- Minimize the sum of
 - distribution,
 - location,
 - relocation
 costs over all T periods

Dynamic Warehouse Location

- Decisions:
 - which warehouses to open/close in period t
 - who should supply which customers in period t
- Decision tradeoff:
Dynamic Warehouse Location

• Assumptions:
 • customer locations j (discrete points)
 • facility locations i
 • locate up to m facilities each period
 • facilities are uncapacitated

• Costs:

Dynamic Warehouse Location

• Decision variables:
Dynamic Warehouse Location

- MIP:

Dynamic Warehouse Location

- Opening/closing constraints: