Heuristics

- The myopic algorithm identifies the \(n \) median locations.
- Customers are assigned to their closest median.
- Improvement heuristic:

 \[
 \text{For each } s_i \rightarrow \text{solve 1 median problem}
 \]

 \[
 \text{gives new locations for the medians}
 \]

 \[
 \rightarrow \text{reassign customers}
 \]

 \[
 \text{if } s_i \text{ changes stop}
 \]

 \[
 \text{else change } s_i \text{ and repeat}
 \]
Myopic Example

Step 1: \(k = 0 \)
Step 2: \(x_0 = \emptyset \)

Step 3:
\[
\begin{align*}
Z'_1 &= 18(11) + 5(24) + 16(33) = 846 \\
Z'_2 &= 15(24) + 16(12) + 11(25) = 837 \\
Z'_3 &= 15(18) + 16(15) + 5(25) = 625 \\
Z'_4 &= 15(11) + 12(5) + 15(33) = 720
\end{align*}
\]

Select smallest \(Z_j^c \) = open median at node 3

Myopic Example

Step 4: \(x_1 = 3 \)
Step 5: \(k < 2 \) \(k = 1 \)
Step 2: \(k = 2 \)
Step 3:
\[
\begin{align*}
Z_1^c &= 0 + 24(5) + 15(16) = 360 \\
Z_2^c &= 24(15) + 0 + 16(12) = 462 \\
Z_3^c &= 12(5) + 18(15) + 0 = 330
\end{align*}
\]

Step 4: \(x_2 = 3, 4, 3 \)
Step 5: \(k = 2 \) [STOP]

\[\Delta\]
Improvement Example

Assume starting solution is \(y_1 = y_3 = 1 \)

Create set \(S \):
- \(S_1 = \{1, 2, 3\} \rightarrow 1 \)-median sol'n: 4
- \(S_2 = \{3, 4, 5\} \rightarrow 1 \)-median sol'n: 4

New set \(S_2 = \{3, 4, 5\} \)

Remaining same, so algorithm stops.
Improvement Example

Discrete Location Models

- "Warehouse Location Problem"
- p potential warehouse locations
 - customer locations
 - p potential warehouse locations