DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING
ISEN 424: SYSTEMS SIMULATION

REQUIRED or ELECTIVE: Required Course

CATALOG DESCRIPTION (2-3) Credit 3
Systems simulation structure, logic and methodologies; generation of random numbers and
deviates; system simulation languages, models and analysis; applications to industrial situations.

PREREQUISITES
STAT 212

PROFESSIONAL COMPONENT
This course provides fundamental concepts, theory and practice in the use of simulation for
designing and analyzing various systems. There is an emphasis on manufacturing systems, but
examples of other systems are also used so that our students have some concept for the wide
breadth of the application of simulation. It is expected that this course will prepare students for
entering the workforce prepared to use simulation as one of their key design and analysis tools in
the study of systems. This is one of the university required writing intensive courses that allows
students to communicate their engineering knowledge to a non-engineer audience.

COURSE LEARNING OUTCOMES
At the end of the course, students should be able to

- understand the statistical issues involved in simulation data preparation and model
design,
- use a commercial simulation language,
- interpret properly the results of a simulation study, and
- effectively communicate model results in a written form.

TEXTBOOK

References
Sturrock

TOPICS COVERED
Lecture
1. Modeling Fundamentals
2. Structure of a Simulation Language
3. Review of Probability and Statistics
4. Modeling and Simulation with SIMAN/ARENA
5. Random Number and Random Variate Generation
6. Input Analysis
7. Output Analysis
8. Verification and Validation

Lab
1. Introduction to Simulation
2. Statistics and random number generation
3. ARENA: Blocks and Elements Templates
4. ARENA: Basic Process and Advanced Process Templates
5. ARENA: Advanced Transfer Templates

CLASS AND LAB SCHEDULE
One hundred minutes of lectures per week; two days a week for 50 minutes per day. Laboratory meetings are 150 minutes per week.

CONTRIBUTION TO MEETING REQUIREMENTS OF CRITERION 5:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Semester hrs</th>
<th>Subject</th>
<th>Semester hrs</th>
<th>Subject</th>
<th>Semester hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td></td>
<td>Engineering Science</td>
<td>2</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Basic Science</td>
<td></td>
<td>Engineering Design</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELATIONSHIP OF COURSE TO PROGRAM OUTCOMES:
A. Ability to apply knowledge of mathematics, science and engineering
B. Ability to design and conduct experiments, as well as to analyze and interpret data
E. Ability to identify, formulate and solve engineering problems
G. Ability to communicate effectively
K. Ability to use the techniques, skills and modern engineering tools necessary for engineering practice

PREPARED BY: Richard M. Feldman Date February 25, 2010